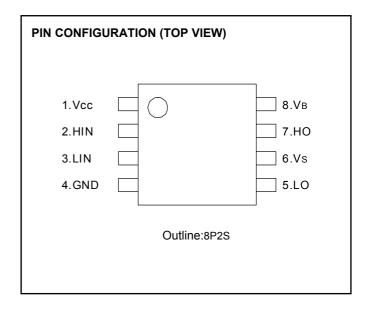
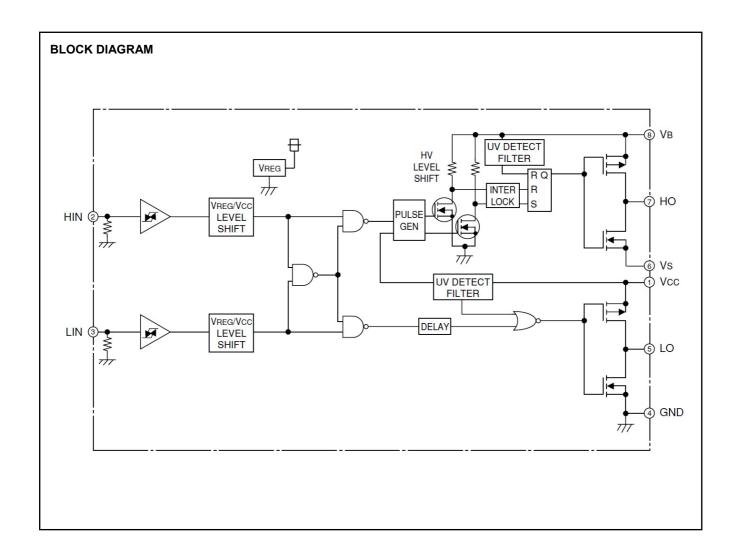
HIGH VOLTAGE HALF BRIDGE DRIVER

DESCRIPTION


M81736FP is high voltage Power MOSFET and IGBT module driver for half bridge applications.


FEATURES

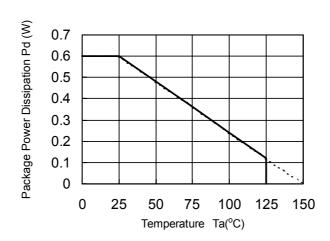
- ●FLOATING SUPPLY VOLTAGE · · · · · · · · 600V
- ●OUTPUT CURRENT · · · · · · +200mA/-350mA
- •HALF BRIDGE DRIVER
- •UNDERVOLTAGE LOCKOUT
- ●SOP-8 PACKAGE

APPLICATIONS

MOSFET and IGBT module inverter driver for PDP, HID lamp, refrigerator, air-conditioner, washing machine, AC servomotor and general purpose.

HIGH VOLTAGE HALF BRIDGE DRIVER

ABSOLUTE MAXIMUM RATINGS (Ta=25°C unless otherwise specified)


Symbol	Parameter	Test conditions	Ratings	Unit
V_B	High Side Floating Supply Absolute Voltage		-0.5 ~ 624	V
V_S	High Side Floating Supply Offset Voltage		V_{B} -24 ~ V_{B} +0.5	V
V_{BS}	High Side Floating Supply Voltage	V _{BS} =V _B -V _S	-0.5 ~ 24	V
V_{HO}	High Side Output Voltage		V_{S} -0.5 ~ V_{B} +0.5	V
V _{CC}	Low Side Fixed Supply Voltage		-0.5 ~ 24	V
V_{LO}	Low Side Output Voltage		-0.5 ~ Vcc+0.5	V
V_{IN}	Logic Input Voltage	HIN, LIN	-0.5 ~ Vcc+0.5	V
Pd	Package Power Dissipation	Ta= 25 °C ,On Board	0.6	W
Kθ	Linear Derating Factor	Ta> 25 °C ,On Board	4.8	mW/°C
Rth(j-c)	Junction-Case Thermal Resistance		50	°C/W
Tj	Junction Temperature		-40 ~ +150	°C
Topr	Operation Temperature		-40 ~ +125	°C
Tstg	Storage Temperature		-40 ~ +150	°C
TL	Solder Heatproof	RoHS Correspondence	255:10s,max 260	°C

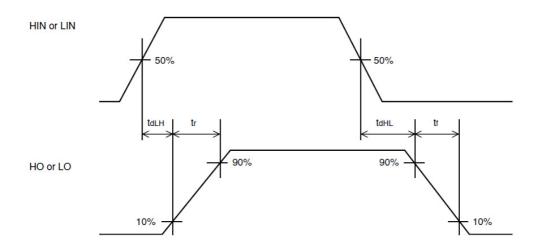
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Test conditions		Unit			
Symbol	Farameter	Test conditions	Min.	Тур.	Max.	Offic	
V_{B}	High Side Floating Supply Absolute Voltage		V _S +10	_	V _S +20	V	
Vs	High Side Floating Supply Offset Voltage		0	-	500	V	
V_{BS}	High Side Floating Supply Voltage	V _{BS} =V _B -V _S	10	_	20	V	
V_{HO}	High Side Output Voltage		Vs	_	V _B	V	
V_{CC}	Low Side Fixed Supply Voltage		10	_	20	V	
V_{LO}	Low Side Output Voltage		0	_	V _{CC}	V	
V_{IN}	Logic Input Voltage	HIN, LIN	0	_	Vcc	V	

^{*} For proper operation, the device should be used within the recommended conditions

THERMAL DERATING FACTOR CHARACTERISTIC (MAXIMUM RATING)

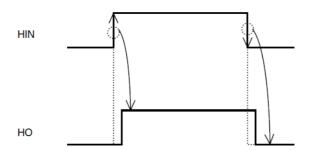
HIGH VOLTAGE HALF BRIDGE DRIVER


$\textbf{ELECTRICAL CHARACTERISTICS} \ (Ta=25^{\circ}\text{C}, V_{\text{CC}}=V_{\text{BS}}(=V_{\text{B}}-V_{\text{S}})=15\text{V}, \ unless \ otherwise \ specified)$

Symbol	Parameter	Test conditions	Limits			Unit
	Faiailletei	Test conditions	Min.	Typ.*	Max.	Ullit
I _{FS}	Floating Supply Leakage Current	$V_B = V_S = 600V$	_		1.0	μΑ
I _{BS}	V _{BS} Standby Current	by Current HIN = LIN = 0V		0.2	0.5	mA
Icc	V _{CC} Standby Current	HIN = LIN = 0V	0.2	0.5	1.0	mA
V_{OH}	High Level Output Voltage	$I_O = -20$ mA, LO, HO	13.6	14.2	_	V
V_{OL}	Low Level Output Voltage	$I_O = 20$ mA, LO, HO	_	0.3	0.6	V
V_{IH}	High Level Input Threshold Voltage	HIN, LIN	2.7	_	_	V
V_{IL}	Low Level Input Threshold Voltage	HIN, LIN	_	_	0.8	V
I _{IH}	High Level Input Bias Current	V _{IN} = 5V	_	25	100	μΑ
I _{IL}	Low Level Input Bias Current	$V_{IN} = 0 V$	_	_	2	μА
V_{BSuvr}	V _{BS} Supply UV Reset Voltage		7.0	8.4	9.8	V
V_{BSuvt}	V _{BS} Supply UV Trip Voltage		6.5	7.85	9.0	V
V_{BSuvh}	V _{BS} Supply UV Hysteresis Voltage		0.3	0.55	_	V
t _{VBSuv}	V _{BS} Supply UV Filter Time		_	7.5	_	μS
V_{CCuvr}	V _{CC} Supply UV Reset Voltage		7.0	8.4	9.8	V
V_{CCuvt}	V _{CC} Supply UV Trip Voltage		6.5	7.85	9.0	V
V_{CCuvh}	V _{CC} Supply UV Hysteresis Voltage		0.3	0.55	_	V
t_{VCCuv}	V _{CC} Supply UV Filter Time		_	7.5	_	μS
Іон	Output High Level Short Circuit Pulsed Current	$V_0 = 0V$, $V_{IN} = 5V$, PW < 10μ s	120	200	_	mA
I _{OL}	Output Low Level Short Circuit Pulsed Current	V_{O} = 15V, V_{IN} = 0V, PW < 10 μ s	250	350	_	mA
R _{OH}	Output High Level On Resistance	$I_{O} = -20 \text{mA}, R_{OH} = (V_{CC} - V_{O})/I_{O}$	_	40	70	Ω
R _{OL}	Output Low Level On Resistance	$I_{O} = 20 \text{mA}, R_{OL} = V_{O}/I_{O}$	_	15	30	Ω
$t_{\text{dLH(HO)}}$	High Side Turn-On Propagation Delay	CL = 1000pF between HO-V _S	_	150	300	ns
$t_{\text{dHL(HO)}}$	High Side Turn-Off Propagation Delay	CL = 1000pF between HO-V _S	_	130	230	ns
t_{rH}	High Side Turn-On Rise Time	CL = 1000pF between HO-V _S	_	130	220	ns
t_{fH}	High Side Turn-Off Fall Time	CL = 1000pF between HO-V _S	_	50	80	ns
$t_{\text{dLH(LO)}}$	Low Side Turn-On Propagation Delay	CL = 1000pF between LO-GND	_	150	300	ns
t _{dHL(LO)}	Low Side Turn-Off Propagation Delay	CL = 1000pF between LO-GND	_	130	230	ns
t_{rL}	Low Side Turn-On Rise Time	CL = 1000pF between LO-GND	_	130	220	ns
t _{fL}	Low Side Turn-Off Fall Time	CL = 1000pF between LO-GND	_	50	80	ns
Δt_{dLH}	Delay Matching, High Side and Low Side Turn-On	t _{dLH(HO)} -t _{dLH(LO)}	_	0	30	ns
Δt_{dHL}	Delay Matching, High Side and Low Side Turn-Off	t _{dHL(HO)} -t _{dHL(LO)}	_	0	30	ns

^{*} Typ. is not specified.

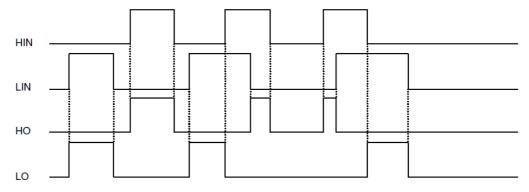
TIMING REQUIREMENT

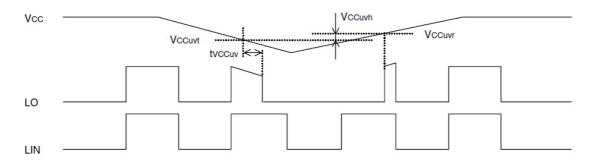


FUNCTION TABLE

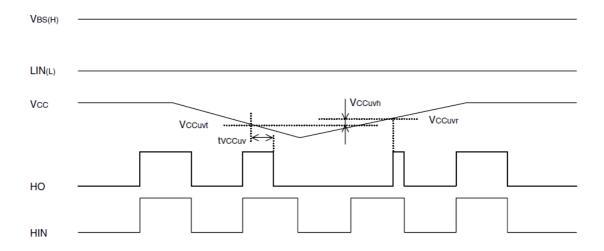
HIN	LIN	V _{BS} UV	V _{CC} UV	НО	LO	Behavioral state
H→L	L	Н	Н	L	L	LO = HO = Low
H→L	Н	Н	Н	L	Н	LO = High
L→H	L	Н	Н	Η	L	HO = High
L→H	Н	Н	Н	L	L	LO = HO = Low
Х	L	L	Н	L	L	HO = Low, V _{BS} UV
Х	Н	L	Н	L	Н	LO = High, V _{BS} UV
H→L	Х	Н	L	L	L	LO = Low, V _{CC} UV
L→H	Х	Н	L	L	L	HO =LO= Low, V _{CC} UV

Note1: "L" state of V_{BS} UV, V_{CC} UV means that UV trip voltage.


- 2 : In the case of both input signals (HIN and LIN) are "H", output signals (HO and LO) become "L".
- $3: X (HIN): L \rightarrow H \text{ or } H \rightarrow L.X(LIN): H \text{ or } L.$
- 4 : Output signal (HO) is triggered by the edge of input signal.

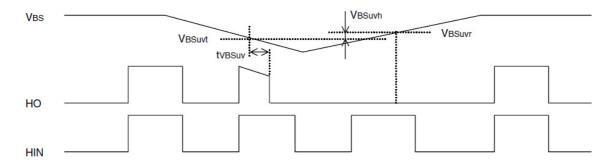

TIMING DIAGRAM

Input/Output Timing Diagram
 HIGH ACTIVE (When input signal (HIN or LIN) is "H", then output signal (HO or LO) is "H".)
 In the case of both input signals (HIN and LIN) are "H", output signals (HO and LO) become "L".



2. V_{CC} (V_{BS}) Supply Under Voltage Lockout Timing Diagram

If V_{CC} supply voltage drops below UV trip voltage (V_{CCuvt} = V_{CCuvr} - V_{CCuvh}) for V_{CC} supply UV filter time, output signal becomes "L". As soon as V_{CC} supply voltage rises over UV reset voltage, output signal LO becomes "H".

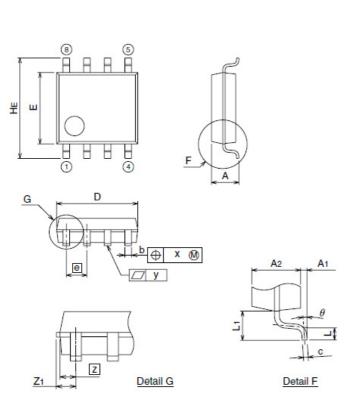

If V_{CC} supply voltage drops below UV trip voltage ($V_{CCuvt} = V_{CCuvr} - V_{CCuvh}$) for V_{CC} supply UV filter time, output signal becomes "L". As soon as V_{CC} supply voltage rises over UV reset voltage, output signal HO becomes "H" it input signal is "H". ($V_{CC} > V_{BS}$)

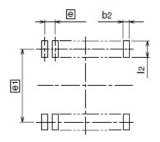
HIGH VOLTAGE HALF BRIDGE DRIVER

If V_{BS} supply voltage drops below UV trip voltage ($V_{BSuvt} = V_{BSuvr} - V_{BSuvh}$) for V_{BS} supply UV filter time, output signal becomes "L". As soon as V_{BS} supply voltage rises over UV reset voltage, output signal HO becomes "H" at following "H" edge of input signal.

3. Allowable Supply Voltage Transient

It is recommended to supply V_{CC} firstly and supply V_{BS} secondly. In the case of shutting off supply voltage, please shut off V_{BS} firstly and shut off V_{CC} secondly. When applying V_{CC} and V_{BS} , power supply should be applied slowly. If it rises rapidly, output signal (HO or LO) may be malfunction.




HIGH VOLTAGE HALF BRIDGE DRIVER

Consideration

As for this product, the terminal of low voltage part and high-voltage part is very clear (The Fifth: LO, The Sixth: V_S). Therefore, pin insulation space distance should be taken enough.

PACKAGE OUTLINE

Recommended Mount Pad

C b . I	Dimension in Millimeters					
Symbol	Min	Nom	Max			
Α	<u>-2</u> 3	_	1.9			
A1	0.05		_			
A2		1.5	12			
b	0.35	0.4	0.5			
С	0.13	0.15	0.2			
D	4.8	5.0	5.2			
E	4.2	4.4	4.6			
е	-	1.27	-			
HE	5.9	6.2	6.5			
L	0.2	0.4	0.6			
L ₁	-	0.9	_			
Z	-	0.595	_			
Z ₁	-	-	0.745			
X	_	_	0.25			
У	-	-	0.1			
θ	0°	-	10°			
b2	-	0.76	_			
e1	_	5.72	_			
12	1.27	_	1=1			

